

Input Validation with PHP

Michael Alaimo

DC PHP Monthly Meeting

08/09/2016

You must validate

In programming input validation is very important. When user

input is not validated malicious users can exploit security issues

in computer applications. Applications can also function

incorrectly as a result of bad user input.

Input data validation is the most important security measure in

software security. -

Yasuo Ohgaki, a PHP core developer working on updating filter

support (http://bit.ly/2b3gl1u).

Validation is first in Security

What to validate

Validate input from all untrusted data sources. Proper input validation

can eliminate the vast majority of software vulnerabilities. Be

suspicious of most external data sources, including command line

arguments, network interfaces, environmental variables, and user

controlled files -

Robert C. Seacord, author of Secure Coding in C and C+ who is a

computer security specialist and is leads the Secure Coding Initiative

at CERT.

CERT

At the CERT Division of the Software Engineering Institute (SEI), we

study and solve problems with widespread cybersecurity implications,

research security vulnerabilities in software products, contribute to

long-term changes in networked systems, and develop cutting-edge

information and training to help improve cybersecurity.

You can view the CERT home page at: http://www.cert.org

Top 10 Secure Coding Practices

Top 10 Secure Coding Practices by Robert Seacord (http://bit.ly/2az01Jf)

● Validate input. Validate input from all untrusted data sources. Proper input validation can eliminate the
vast majority of software vulnerabilities. Be suspicious of most external data sources, including command
line arguments, network interfaces, environmental variables, and user controlled files [Seacord 05].

● Heed compiler warnings. Compile code using the highest warning level available for your compiler and eliminate
warnings by modifying the code [C MSC00-A, C++ MSC00-A]. Use static and dynamic analysis tools to detect and
eliminate additional security flaws.

● Architect and design for security policies. Create a software architecture and design your software to implement
and enforce security policies. For example, if your system requires different privileges at different times, consider
dividing the system into distinct intercommunicating subsystems, each with an appropriate privilege set.

● Keep it simple. Keep the design as simple and small as possible [Saltzer 74, Saltzer 75]. Complex designs
increase the likelihood that errors will be made in their implementation, configuration, and use. Additionally, the
effort required to achieve an appropriate level of assurance increases dramatically as security mechanisms
become more complex.

● Default deny. Base access decisions on permission rather than exclusion. This means that, by default, access is
denied and the protection scheme identifies conditions under which access is permitted [Saltzer 74, Saltzer 75].

Top 10 Secure Coding Practices

● Adhere to the principle of least privilege. Every process should execute with the the least set of privileges necessary to
complete the job. Any elevated permission should be held for a minimum time. This approach reduces the
opportunities an attacker has to execute arbitrary code with elevated privileges [Saltzer 74, Saltzer 75].

● Sanitize data sent to other systems. Sanitize all data passed to complex subsystems [C STR02-A] such as
command shells, relational databases, and commercial off-the-shelf (COTS) components. Attackers may be
able to invoke unused functionality in these components through the use of SQL, command, or other injection
attacks. This is not necessarily an input validation problem because the complex subsystem being invoked
does not understand the context in which the call is made. Because the calling process understands the
context, it is responsible for sanitizing the data before invoking the subsystem.

● Practice defense in depth. Manage risk with multiple defensive strategies, so that if one layer of defense turns out to
be inadequate, another layer of defense can prevent a security flaw from becoming an exploitable vulnerability and/or
limit the consequences of a successful exploit. For example, combining secure programming techniques with secure
runtime environments should reduce the likelihood that vulnerabilities remaining in the code at deployment time can be
exploited in the operational environment [Seacord 05].

● Use effective quality assurance techniques. Good quality assurance techniques can be effective in identifying and
eliminating vulnerabilities. Fuzz testing, penetration testing, and source code audits should all be incorporated as part
of an effective quality assurance program. Independent security reviews can lead to more secure systems. External
reviewers bring an independent perspective; for example, in identifying and correcting invalid assumptions [Seacord
05].

● Adopt a secure coding standard. Develop and/or apply a secure coding standard for your target development language
and platform.

OWASP

The Open Web Application Security Project - (http://bit.ly/2aJcoOe)

● OWASP thrives to be the global community that drives visibility and
evolution in the safety and security of the world’s software.

● They provide information on PHP security practices including input
validation.

● You can find your local chapter here: http://bit.ly/2bfM9VL

OWASP Secure Coding Practices
Quick Reference Guide

Input Validation:

● Conduct all data validation on a trusted system (e.g., The server)

● Identify all data sources and classify them into trusted and untrusted.
Validate all data from untrusted sources (e.g., Databases, file streams, etc.)

● There should be a centralized input validation routine for the application

● Specify proper character sets, such as UTF-8, for all sources of input

● Encode data to a common character set before validating (Canonicalize)

● All validation failures should result in input rejection

● Determine if the system supports UTF-8 extended character sets and if so,
validate after UTF-8 decoding is completed

OWASP Secure Coding Practices
Quick Reference Guide

● Validate all client provided data before processing, including all parameters,
URLs and HTTP header content (e.g. Cookie names and values). Be sure to
include automated post backs from JavaScript, Flash or other embedded code

● Verify that header values in both requests and responses contain only ASCII
characters

● Validate data from redirects (An attacker may submit malicious content directly
to the target of the redirect, thus circumventing application logic and any
validation performed before the redirect)

● Validate for expected data types

● Validate data range

● Validate data length

● Validate all input against a "white" list of allowed characters, whenever possible

OWASP Secure Coding Practices
Quick Reference Guide
● If any potentially hazardous characters must be allowed as input, be sure

that you implement additional controls like output encoding, secure task
specific APIs and accounting for the utilization of that data throughout the
application . Examples of common hazardous characters include: < > " ' % (
) & + \ \' \"

● If your standard validation routine cannot address the following inputs, then
they should be checked discretely

● Check for null bytes (%00)

● Check for new line characters (%0d, %0a, \r, \n)

● Check for “dot-dot-slash" (../ or ..\) path alterations characters. In cases
where UTF-8 extended character set encoding is supported, address
alternate representation like: %c0%ae%c0%ae/ (Utilize canonicalization to
address double encoding or other forms of obfuscation attacks)

OWASP Secure Coding Practices
Quick Reference Guide

Output Encoding:

● Conduct all encoding on a trusted system (e.g., The server)

● Utilize a standard, tested routine for each type of outbound encoding

● Contextually output encode all data returned to the client that
originated outside the application's trust boundary. HTML entity
encoding is one example, but does not work in all cases

● Encode all characters unless they are known to be safe for the
intended interpreter

● Contextually sanitize all output of un-trusted data to queries for SQL,
XML, and LDAP

● Sanitize all output of un-trusted data to operating system commands

OWASP Secure Coding Practices
Quick Reference Guide

You can download the full OWASP Secure

Coding Practices Quick Reference Guide here:

http://bit.ly/2aEGIKg

Input Validation can prevent

Overflows

Injections

W^X first appeared in OpenBSD 3.3, released May 2003. Similar
features are available for other operating systems, including the PaX and
Exec Shield patches for Linux, and NetBSD 4+'s implementation of PaX.

Although this feature has only protected userland programs for most of
its existence, in late 2014 and early 2015, Mike Larkin made W^X protect

the OpenBSD kernel itself on the AMD64 architecture, with Theo de
Raadt aiding the effort.

Windows uses Data Execution Protection (DEP)

(http://bit.ly/2beXt0Z)

OpenBSD and W^X overflow
protection

Types of Overflows

● arithmetic overflow - a condition that occurs when a calculation produces a

result that is greater than what a given register can store or represent

● integer overflow - a condition that occurs when an integer calculation produces

a result that is greater than what a given register can store or represent

● Buffer overflow - a situation whereby the incoming data size exceeds that which

can be accommodated by a buffer

● heap overflow – A type of buffer overflow occuring in the heap data area

● stack overflow - A type of buffer overflow in which a computer program makes

too many subroutine calls and its call stack runs out of space

Types of Injections

● SQL Injection – Modify an SQL query

● LDAP Injection – Modify an LDAP query

● XML Injection - Modify an XML application

● Xpath Injection – Modify an Xpath query

● Shell Injection – Modify execution of a shell application

● Code Injection – Modify an object in the applications runtime

● Cross Site Scripting (XSS) – Add script to the web application

● Cross Site Request Forgery (CSRF) – Exploit a web
application from a trusted account

National Vulnerability Database

NVD is the U.S. government repository of
standards based vulnerability management data

represented using the Security Content
Automation Protocol (SCAP). This data enables

automation of vulnerability management, security
measurement, and compliance. NVD includes

databases of security checklists, security related
software flaws, misconfigurations, product names,

and impact metrics.

National Vulnerability Database

The URL is: http://nvd.nist.gov/

Examples

Security issues found by using t he NVD system
and are located in Common Vulnerabilities and

Exposures (CVE)

CSRF

● WordPress 4.5 contained a
CSRF attack security issue

● CVE-2016-6635 -
http://bit.ly/2b8kGou

● They security fix involved
adding a check to ensure
that the nonce or security
token is valid during an
AJAX compression test

● This was corrected by
Ronni Skansing -
http://bit.ly/2b8k2aq

Denial of service, integer overflow

● PHP before 5.5.36 and
5.6.x before 5.6.22 contain
an issue with
htmlspecialchars and filter
functionality

● CVE-2016-5094 -
http://bit.ly/2b6oZPS

● Here an extra validation of
max input size was added
to ensure that the use
does not add data larger
than the system can
handle

PHP Changelog

http://bit.ly/2aLGYKt

Code Injection, Remote Code
Execution

● Drupal had a recent issue
where session data
truncation can lead to
unserialization of user
provided data

Upgrading PHP to 5.4.45,
5.5.29, 5.6.13 can mitigate
the issue

This was fixed by:

● David Jardin of the Joomla Security Team

● Damien Tournoud of the Drupal Security
Team - http://bit.ly/2b8pf1T

● Heine Deelstra of the Drupal Security Team -
http://bit.ly/2aMtLQt

● CVE-2016-3171 -
http://bit.ly/2aVY061

Code Injection

It is possible to alter the
function of an application who
implements __wakeup or
__desctruct methods

● The injection occurs during
unserialization or object
destruction

● http://bit.ly/2aLTNXN

● The code would function
normally, but a malicious user
modified a parameter of the
serialized object.

● When the object was
unserlialized the wakeup
method is called and when the
object is destroyed the descruct
method is called.

● It is possible that a parameter
may have been modified
external to the application and
will now cause code injection

Code Injection

Code injection is possible using the REQUEST methds like
GET, POST, PUT, DELETE and COOKIE

● For example a user could store serialized data in a cookie
which could be modified on the client side

● When the object is unserlized on the server side
parameters of the object may have changed to adversley
effect the system during unserialization

● The best option is to not use serialized data from a request
object

Code Injection

For example, it may make sense to store a small
object into a HTTP cookie, but that will leave your

code open to code injection

HMAC Cookies

● It is possible to store a hash of your cookie data and the
raw cookie data into a cookie

● You can then hash the raw data on the server side and test
it against the hash that was sent with your cookie

● If the values match then you can feel that the data was not
modified

PHP Security Manual

● http://bit.ly/2aSILO5

● Contains information
related to PHP and
security including input
validation

● Null Byte Security

● SQL Injections

● Register Globals

● Magic Quotes

Null Byte Security

SQL Injections

A way for an attacker to
obtain or modify database
data

● PDO – use quote or a prepared
statement

● MySQLi – use real_escape_string or
a prepared statement

● PGSQL – use pg_escape_*
functions or the prepare functionality

● Using the database quoting
and escaping functionality
is the correct way to stop an
SQL Injection

● SQL injection attacks are
arguably the most common
way PHP websites get
exploited. The importance
can not be overstated. -
http://bit.ly/2aLYsWQ

Register Globals and Magic
Quotes

● These features are now
deprecated in PHP

● They have been items that
made code injections and
sql injections something
that could be easily
overlooked during
development

Register Globals

● When enabled it is possible to
create an SQL or code injection by
overwriting a global variable which
was not intended to be overwritten
from an HTTP request

Magic Quotes

● Adds slashes to data similar to
addslashes PHP function which
does not prevent an SQL injection

● Instead use the database escape
functionality

Methods on Validating Data with
PHP

● PCRE Regular Expression - http://bit.ly/2bgKTS2

● PHP Filter functions - http://bit.ly/2aZCH5T

● Type Juggling - http://bit.ly/2b6J1d7

● Strip Tags - http://bit.ly/2aM1pa2

● Encoding Data

PCRE Regular Expression
Example

If (preg_match('/^(\d+)$/', $_GET['id'], $matches) === 1) {

$id = $matches[1];

} else {

Echo 'Input is not an integer';

}

● preg_match will return 1 when a match is found and 0
when no match is found

● Matches will be contained in the third parameter of the
preg_match function

PHP Filter Example

If (($var = filter_input(INPUT_GET, 'id', FILTER_VALIDATE_INT,
array('options' => array('min_range' => 5, 'max_range' => 10))
=== FALSE) {

echo 'Input is not an integer';

}

● You can use filter_input for REQUEST variables

● You can use filter_var for regular variables

● There are both sanitize and validate filters

● Options exist for many filters

Strip Tags

● Striping tags can prevent Cross Site Scripting (XSS) and it
also removes the null byte charater.

● Htmlspecialchars can prevent XSS as well, but leaves in
html entities

Encoding Data

● Using filter functionality to encode ASCII data

● Using urlencode to encode url parameters

● Using utf8_encode when working with XML

● Using http_build_query when creating a url

● Using htmlentities or htmlspecialchars

PHP Casting Example

$id = (int)$_GET['id'];

● Variable $id now contains an integer

● (int), (integer) - cast to integer

● (bool), (boolean) - cast to boolean

● (float), (double), (real) - cast to float

● (string) - cast to string

● (array) - cast to array

● (object) - cast to object

● (unset) - cast to NULL (PHP 5)

● (binary) casting and b prefix forward support was added in PHP
5.2.1

Size Checking

● Checking the size of data can be important too

● Size checking can prevent overflows.

● SQL Fields can be tested to be within the ranges of the database
fields. This includes text and numerical data and prevents data
loss through truncation or query failure during inserts and updates.

● Testing the size of inputs can be important when dealing with
numbers, text and files.

● Testing input size can prevent a script from not working due to
running out of memory, filling up the hard disk with uploaded files
or even filling server log files resulting in a denial of service.

Size Checking

● You can use the PHP comparison operators to check
numerical sizes

● PHP FILTER_VALIDATE_INT can be used to test min and
max size

● The php strlen function can determin a strings length

Validating data for creating
requests

● Sending data to someone else's server is important

● This goes for Web Servers, SQL servers and file servers

● It is important to ensure that the data you send to the
servers whether they are yours or someone elses is
validated, sanitized and properly encoded

Input Validation Pointers

● If you use JavaScript or client side validation, you must
also use serverside validation with something like PHP

● Read Internet Resources such as OWASP and the php|
architect’s Guide to PHP Security

● Validate all user data including data read from files

OWASP Validation Strategy

● Exact Match (Constrain)

● Known Good (Accept)

● Reject Known bad (Reject)

● Encode Known bad (Sanitise)

● http://bit.ly/2aGXNTM

● http://bit.ly/2bgO0It

Exact Match

● In addition, there must be a check for maximum length of any
input received from an external source, such as a downstream
service/computer or a user at a web browser.

● Rejected Data must not be persisted to the data store unless it is
sanitized. This is a common mistake to log erroneous data, but
that may be what the attacker wishes your application to do.

● Exact Match: (preferred method) Only accept values from a
finite list of known values.

● e.g.: A Radio button component on a Web page has 3 settings
(A, B, C). Only one of those three settings must be accepted (A
or B or C). Any other value must be rejected.

Known Good

● Known Good: If we do not have a finite list of all the
possible values that can be entered into the system, we
use the known good approach.

● e.g.: an email address, we know it shall contain one and
only one @. It may also have one or more full stops “.”.
The rest of the information can be anything from [a-z] or
[A-Z] or [0-9] and some other characters such as “_ “or “–“,
so we let these ranges in and define a maximum length for
the address.

Reject Known Bad

● Reject Known bad: We have a list of known bad values
we do not wish to be entered into the system. This occurs
on freeform text areas and areas where a user may write a
note. The weakness of this model is that today known bad
may not be sufficient for tomorrow.

Encode Known Bad

● Encode Known Bad: This is the weakest approach. This
approach accepts all input but HTML encodes any
characters within a certain character range. HTML encoding
is done so if the input needs to be redisplayed the browser
shall not interpret the text as script, but the text looks the
same as what the user originally typed.

● HTML-encoding and URL-encoding user input when writing
back to the client. In this case, the assumption is that no
input is treated as HTML and all output is written back in a
protected form. This is sanitisation in action

● Sanitize data with PHP filter to encode unwanted characters

Conclusion

Input validation is important for security and correct functioning
of the application. It can improve the user experience and
prevent malicious users from using the application in a way

other than it was intended.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

